Страница:
<< 32 33 34 35
36 37 38 >> [Всего задач: 367]
|
|
Сложность: 3+ Классы: 8,9,10
|
Докажите, что для любого нечётного натурального числа a существует такое натуральное число b, что 2b – 1 делится на a.
|
|
Сложность: 3+ Классы: 7,8,9,10
|
Докажите, что каково бы ни было целое число n, среди чисел n, n + 1, n + 2, ..., n + 9 есть хотя бы одно, взаимно простое с остальными девятью.
В таблицу 8×8 вписаны все целые числа от 1 до 64. Доказать, что при
этом найдутся два соседних числа, разность между которыми не меньше 5.
(Соседними называются числа, стоящие в клетках, имеющих общую сторону.)
|
|
Сложность: 3+ Классы: 9,10
|
В таблицу 9×9 вписаны все целые числа от 1 до 81. Доказать, что найдутся два соседних числа, разность между которыми не меньше 6.
|
|
Сложность: 3+ Классы: 8,9,10
|
Все целые числа от 1 до 2n выписаны в строчку. Затем к каждому числу
прибавили номер того места, на котором оно стоит.
Доказать, что среди полученных сумм найдутся хотя бы две, дающие при делении на 2n одинаковый остаток.
Страница:
<< 32 33 34 35
36 37 38 >> [Всего задач: 367]