Страница:
<< 68 69 70 71 72
73 74 >> [Всего задач: 367]
|
|
Сложность: 5- Классы: 10,11
|
Двое игроков играют в карточную игру. У них есть колода из n попарно различных карт. Про любые две карты из колоды известно, какая из них бьёт другую (при этом, если A бьёт B, а B бьёт C, то может оказаться, что C бьёт A). Колода распределена между игроками произвольным образом. На каждом ходу игроки открывают по верхней карте из своих колод, и тот, чья карта бьёт карту другого игрока, берёт обе карты и кладёт их в самый низ своей колоды в произвольном порядке по своему усмотрению. Докажите, что при любой исходной раздаче игроки могут, зная расположение карт, договориться и действовать так, чтобы один из игроков остался без карт.
|
|
Сложность: 5 Классы: 10,11
|
На поверхности сферической планеты расположены четыре материка, отделённые друг от друга океаном. Назовем точку океана особой, если для нее найдутся не менее трёх ближайших (находящихся от нее на равных расстояниях) точек суши, причём все на разных материках. Какое наибольшее число особых точек может быть на
этой планете?
|
|
Сложность: 5 Классы: 10,11
|
а) Доказать, что сумма цифр числа K не более чем в 8 раз превосходит сумму цифр числа 8K.
б) Для каких натуральных k существует такое положительное число ck, что ≥ ck для всех натуральных N? Найдите наибольшее подходящее значение ck.
|
|
Сложность: 5 Классы: 8,9,10
|
В таблице из n столбцов и 2n строк, в которых выписаны все возможные различные наборы из n чисел 1 и –1, некоторые числа заменены нулями. Докажите, что можно выбрать некоторое непустое подмножество строк так, что:
а) сумма всех чисел в выбранных строках равна 0;
б) сумма всех выбранных строк есть нулевая строка.
(Строки складываются покоординатно как векторы.)
|
|
Сложность: 5 Классы: 8,9,10,11
|
Клетки таблицы 100×100 окрашены в 4 цвета так, что в каждой строке и в каждом столбце ровно по 25 клеток каждого цвета.
Докажите, что найдутся две строки и два столбца, все четыре клетки на пересечении которых окрашены в разные цвета.
Страница:
<< 68 69 70 71 72
73 74 >> [Всего задач: 367]