Страница:
<< 32 33 34 35
36 37 38 >> [Всего задач: 222]
Клетчатый прямоугольник разбит на двухклеточные доминошки. В каждой доминошке провели одну из двух диагоналей. Оказалось, что никакие диагонали не имеют общих концов. Докажите, что ровно два из четырёх углов прямоугольника являются концами диагоналей.
|
|
Сложность: 4 Классы: 10,11
|
Пусть p – простое число. Набор из p + 2 натуральных чисел (не обязательно различных) назовём интересным, если сумма любых p из них делится на каждое из двух оставшихся чисел. Найдите все интересные наборы.
|
|
Сложность: 4+ Классы: 8,9,10
|
а) Имеется 51 двузначное число. Докажите, что из этих чисел можно выбрать по крайней мере 6 чисел так, чтобы никакие два из выбранных чисел ни в одном разряде не имели одинаковой цифры.
б) Даны натуральные числа k и n, причём 1 < k < n. Для какого наименьшего m верно следующее утверждение: при любой расстановке m ладей на доске размером n×n клеток можно выбрать k ладей из этих m так, чтобы никакие две из этих выбранных ладей не били друг друга?
|
|
Сложность: 4+ Классы: 9,10,11
|
По кругу расставлено не менее четырёх неотрицательных чисел, в сумме равных
единице.
Докажите, что сумма всех попарных произведений соседних чисел не
больше ¼.
|
|
Сложность: 4+ Классы: 8,9,10,11
|
В клетках таблицы 2000×2000 записаны числа 1 и –1. Известно, что сумма всех чисел в таблице неотрицательна. Докажите, что найдутся 1000 строк и 1000 столбцов таблицы, для которых сумма чисел, записанных в клетках, находящихся на их пересечении, не меньше 1000.
Страница:
<< 32 33 34 35
36 37 38 >> [Всего задач: 222]