ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Дранишников А.Н.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 2]      



Задача 55544

Темы:   [ Теорема синусов ]
[ Две касательные, проведенные из одной точки ]
[ Правильный (равносторонний) треугольник ]
[ Вписанные и описанные окружности ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3+
Классы: 8,9,10

Dписанная окружность треугольника ABC касается сторон AB, BC и AC в точках C1, A1 и B1 соответственно. Известно, что  AA1 = BB1 = CC1.  Докажите, что треугольник ABC правильный.

Прислать комментарий     Решение

Задача 79458

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Индукция (прочее) ]
[ Принцип крайнего (прочее) ]
[ Неравенство Коши ]
Сложность: 4+
Классы: 9,10,11

По кругу расставлено не менее четырёх неотрицательных чисел, в сумме равных единице.
Докажите, что сумма всех попарных произведений соседних чисел не больше ¼.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 2]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .