ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 275]      



Задача 101879

Темы:   [ Вспомогательные подобные треугольники ]
[ Угол между касательной и хордой ]
[ Трапеции (прочее) ]
Сложность: 4-
Классы: 8,9

Дана трапеция ABCD с основаниями AD и BC. Боковая сторона  CD = 16.  Диагонали AC и BD пересекаются в точке E. Окружность радиуса  R = 17,  описанная около треугольника CDE, пересекает основание AD в точке F. Прямая BF касается этой окружности. Известно, что  ∠AED = ∠BCD.  Найдите основания и высоту трапеции ABCD.

Прислать комментарий     Решение

Задача 101903

Темы:   [ Вспомогательные подобные треугольники ]
[ Угол между касательной и хордой ]
[ Две касательные, проведенные из одной точки ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Из точки C проведены две касательные к окружности, A и B – точки касания. На окружности взята точка M, отличная от A и B. Из точки M опущены перпендикуляры MN, ME, MD на стороны AB, BC, CA треугольника ABC соответственно. Найдите площадь треугольника MNE, если известны стороны  MN = 4,  MD = 2  и  ∠ACB = 120°.

Прислать комментарий     Решение

Задача 101904

Темы:   [ Вспомогательные подобные треугольники ]
[ Угол между касательной и хордой ]
[ Две касательные, проведенные из одной точки ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Окружность касается сторон AB и AC треугольника ABC, D и E – точки касания. На окружности взята точка F, отличная от D и E. Из точки F опущены перпендикуляры FG, FH, FK на стороны AD, AE, DE соответственно. Найдите площадь треугольника GKF, если  FK = 6,  FH = 9  и  ∠BAC = 60°.

Прислать комментарий     Решение

Задача 102417

Темы:   [ Теорема синусов ]
[ Угол между касательной и хордой ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC угол $ \angle$B равен $ {\frac{\pi}{6}}$. Через точки A и B проведена окружность радиуса 2 см, касающаяся прямой AC в точке A. Через точки B и C проведена окружность радиуса 3 см, касающаяся прямой AC в точке C. Найдите длину стороны AC.

Прислать комментарий     Решение


Задача 102418

Темы:   [ Теорема синусов ]
[ Угол между касательной и хордой ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC угол $ \angle$B равен $ {\frac{\pi}{3}}$. Через точки A и B проведена окружность радиуса 3 см, касающаяся прямой AC в точке A. Через точки B и C проведена окружность радиуса 4 см, касающаяся прямой AC в точке C. Найдите длину стороны AC.

Прислать комментарий     Решение


Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .