Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 283]
Выпуклый четырёхугольник ABCD описан вокруг окружности с центром в точке O, при этом AO = OC = 1, BO = OD = 2.
Найдите периметр четырёхугольника ABCD.
В выпуклый четырёхугольник ABCD вписана окружность с центром в точке O, причём AO = OC, BC = 5, CD = 12, а угол DAB прямой.
Найдите площадь четырёхугольника ABCD.
В трапеции ABCD с основаниями AD и BC боковая сторона
AB равна 2. Биссектриса угла BAD пересекает прямую BC в точке
E. В треугольник ABE вписана окружность, касающаяся стороны AB в точке M и стороны BE в точке H, MH = 1. Найдите угол BAD.
В равнобедренном треугольнике ABC (AB = BC) на высоте BD как на диаметре построена окружность. К окружности проведены касательные AM и CN, продолжения которых пересекаются в точке O. Найдите отношение AB/AC, если OM/AC = k и высота BD больше основания AC.
В равнобедренном треугольнике ABC (AB = BC) на высоте BD как на диаметре построена окружность. Через точки A и C к окружности проведены касательные AM и CN, продолжения которых пересекаются в точке O. Найдите отношение AB/AC, если OM/AC = k и высота BD меньше основания AC.
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 283]