Страница:
<< 69 70 71 72
73 74 75 >> [Всего задач: 1547]
|
|
Сложность: 4+ Классы: 9,10
|
Общие внешние касательные к парам окружностей
S1
и
S2,
S2 и
S3,
S3 и
S1 пересекаются в точках
A,
B и
C соответственно. Докажите, что точки
A,
B и
C лежат
на одной прямой.
|
|
Сложность: 4+ Классы: 9,10,11
|
Трапеции
ABCD и
APQD имеют общее основание
AD, причем длины всех их оснований попарно различны.
Докажите, что на одной прямой лежат точки пересечения
следующих пар прямых:
а)
AB и
CD,
AP и
DQ,
BP и
CQ;
б)
AB и
CD,
AQ и
DP,
BQ и
CP.
Даны две неконцентрические окружности
S1 и
S2.
Докажите, что существуют ровно две поворотные гомотетии
с углом поворота
90
o, переводящие
S1 в
S2.
а) На сторонах треугольника
ABC построены собственно подобные треугольники
A1BC,
CAB1 и
BC1A. Пусть
A2,
B2 и
C2 — соответственные
точки этих треугольников. Докажите, что
A2B2C2
A1BC.
б) Докажите, что центры правильных треугольников, построенных внешним
(внутренним) образом на сторонах треугольника
ABC, образуют правильный
треугольник.
|
|
Сложность: 4+ Классы: 9,10,11
|
Как известно, Луна вращается вокруг Земли. Будем считать, что Земля и Луна – это точки, а Луна вращается вокруг Земли по круговой орбите с периодом один оборот в месяц. Летающая тарелка находится в плоскости лунной орбиты. Она может перемещаться прыжками через Луну и Землю: из старого места (точки А) она моментально появляется в новом (в точке A') так, что в середине отрезка АA' находится или Луна, или Земля. Между прыжками летающая тарелка неподвижно висит в космическом пространстве.
а) Определите, какое минимальное количество прыжков потребуется летающей тарелке, чтобы допрыгнуть из любой точки внутри лунной орбиты до любой другой точки внутри лунной орбиты.
б) Докажите, что летающая тарелка, используя неограниченное количество прыжков, может допрыгнуть из любой точки внутри лунной орбиты до любой другой точки внутри лунной орбиты за любой промежуток времени, например, за секунду.
Страница:
<< 69 70 71 72
73 74 75 >> [Всего задач: 1547]