ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 108 109 110 111 112 113 114 >> [Всего задач: 1026]      



Задача 55663

Темы:   [ Композиции симметрий ]
[ Поворот (прочее) ]
Сложность: 4+
Классы: 8,9

Дана прямая l и точка O на ней. Докажите, что композиция поворота вокруг точки O на угол $ \alpha$ и симметрии относительно прямой l есть осевая симметрия относительно прямой, проходящей через точку O и составляющей с прямой l угол $ {\frac{\alpha}{2}}$.

Прислать комментарий     Решение


Задача 55666

Темы:   [ Композиции симметрий ]
[ Параллельный перенос (прочее) ]
Сложность: 4+
Классы: 8,9

Докажите, что композиция симметрий относительно n параллельных прямых l1, l2, ..., ln есть:

а) параллельный перенос, если n чётно;

б) осевая симметрия, если n нечётно.

Прислать комментарий     Решение


Задача 55670

Темы:   [ Композиции симметрий ]
[ Параллельный перенос (прочее) ]
Сложность: 4+
Классы: 8,9

Докажите, что композиция симметрий относительно n параллельных прямых l1, l2, ..., ln есть:

а) параллельный перенос, если n чётно;

б) осевая симметрия, если n нечётно.

Прислать комментарий     Решение


Задача 55723

Темы:   [ Поворот помогает решить задачу ]
[ Поворот на $90^\circ$ ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4+
Классы: 8,9,10

Внутри квадрата A1A2A3A4 взята точка P. Из вершины A1 опущен перпендикуляр на A2P, из A2 — перпендикуляр на A3P, из A3 — на A4P, из A4 — на A1P. Докажите, что все четыре перпендикуляра (или их продолжения) пересекается в одной точке.

Прислать комментарий     Решение


Задача 57544

Темы:   [ Угол (экстремальные свойства) ]
[ Центральная симметрия помогает решить задачу ]
[ Перегруппировка площадей ]
[ Неравенства с площадями ]
Сложность: 4+
Классы: 8,9,10

Дан угол XAY и точка O внутри его. Проведите через точку O прямую, отсекающую от данного угла треугольник наименьшей площади.
Прислать комментарий     Решение


Страница: << 108 109 110 111 112 113 114 >> [Всего задач: 1026]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .