ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 25]      



Задача 57167

Тема:   [ ГМТ с ненулевой площадью ]
Сложность: 3
Классы: 9

Пусть O — центр правильного треугольника ABC. Найдите ГМТ M, удовлетворяющих следующему условию: любая прямая, проведенная через точку M, пересекает либо отрезок AB, либо отрезок CO.
Прислать комментарий     Решение


Задача 78030

Темы:   [ ГМТ с ненулевой площадью ]
[ Четырехугольники ]
Сложность: 3
Классы: 9

Дан четырехугольник ABCD. На стороне AB взята точка K, на стороне BC &8212; точка L, на стороне CD — точка M и на стороне AD — точка N, так, что KB = BL = a, MD = DN = b. Пусть KL $ \nparallel$ MN. Найти геометрическое место точек пересечения прямых KL и MN при изменении a и b.
Прислать комментарий     Решение


Задача 66208

Темы:   [ ГМТ с ненулевой площадью ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9

На плоскости дан отрезок AB. Рассмотрим всевозможные остроугольные треугольники со стороной AB. Найдите геометрическое место
  а) вершин их наибольших углов;
  б) их центров вписанных окружностей.

Прислать комментарий     Решение

Задача 77956

Тема:   [ ГМТ с ненулевой площадью ]
Сложность: 3+
Классы: 8,9

Дан отрезок AB. Найдите геометрическое место вершин C остроугольных треугольников ABC.

Прислать комментарий     Решение

Задача 78083

Темы:   [ ГМТ с ненулевой площадью ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 9

Все точки данного отрезка AB проектируются на всевозможные прямые, проходящие через данную точку O. Найти геометрическое место этих проекций.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 25]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .