Страница:
<< 39 40 41 42
43 44 45 >> [Всего задач: 298]
Известно, что в выпуклом n-угольнике (n > 3) никакие три диагонали не проходят через одну точку.
Найдите число точек (отличных от вершины) пересечения пар диагоналей.
На двух параллельных прямых a и b выбраны точки A1, A2, ..., Am и B1, B2, ..., Bn
соответственно и проведены все отрезки вида AiBj
(1 ≤ i ≤ m, 1 ≤ j ≤ n). Сколько будет точек пересечения, если известно, что никакие три из этих отрезков в одной точке не пересекаются?
|
|
Сложность: 3 Классы: 7,8,9
|
На плоскости отмечены четыре точки. Докажите, что их
можно разбить на две группы так, что эти группы точек нельзя
будет отделить одну от другой никакой прямой.
|
|
Сложность: 3 Классы: 8,9,10
|
На плоскости синим и красным цветом окрашено несколько точек так, что никакие три точки одного цвета не лежат на одной прямой (точек каждого цвета не меньше трёх). Докажите, что какие-то три точки одного цвета образуют треугольник, на трёх сторонах которого лежит не более двух точек другого цвета.
На окружности радиуса 1 отмечено 100 точек.
Докажите, что на окружности найдётся точка, сумма расстояний от которой до всех отмеченных точек будет не меньше 100.
Страница:
<< 39 40 41 42
43 44 45 >> [Всего задач: 298]