Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 207]
Биссектрисы треугольника ABC пересекаются в точке O. Через
точку O проходят две прямые, которые параллельны прямым AB и AC и пересекаются с BC в точках D и E. Докажите, что периметр треугольника OED равен отрезку BC.
Прямая касается двух окружностей в точках A и B. Линия центров
пересекает первую окружность в точках E и C, а вторую – в точках D и F.
Докажите, что прямая AC либо параллельна, либо перпендикулярна BD.
|
|
Сложность: 3+ Классы: 8,9,10
|
Между двумя параллельными прямыми расположили окружность радиуса 1, касающуюся обеих прямых, и равнобедренный треугольник, основание которого лежит на одной из прямых, а вершина – на другой. Известно, что треугольник и окружность имеют ровно одну общую точку и что эта точка лежит на вписанной окружности треугольника. Найдите радиус вписанной окружности треугольника.
|
|
Сложность: 3+ Классы: 7,8,9
|
В четырёхугольнике ABCD углы A и C равны. Биссектриса
угла B пересекает прямую AD в точке P. Перпендикуляр к BP, проходящий через точку A, пересекает прямую BC в точке Q. Докажите, что прямые PQ и CD параллельны.
В равнобедренном треугольнике ABC (AB = BC) на стороне AB выбрана точка D, и вокруг треугольников ADC и
BDC описаны окружности S1 и S2 соответственно. Касательная, проведённая к S1 в точке D, пересекает второй раз окружность S2 в точке M. Докажите, что BM || AC.
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 207]