Страница:
<< 6 7 8 9 10
11 12 >> [Всего задач: 59]
В некоторый момент угол между часовой и минутной стрелками равен α. Через час он опять равен α. Найдите все возможные значения α.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Внутри квадрата со стороной 1 расположено несколько окружностей, сумма длин которых равна 10.
Докажите, что найдётся прямая, пересекающая по крайней
мере четыре из этих окружностей.
|
|
Сложность: 3+ Классы: 8,9,10
|
На окружности радиуса 1 отмечена точка
O и из неё циркулем делается
засечка вправо радиусом
l. Из полученной точки
O1 в ту же сторону тем же
радиусом делается вторая засечка, и так делается 1968 раз. После этого
окружность разрезается во всех 1968 засечках, и получается 1968 дуг. Сколько различных длин дуг может при этом получиться?
|
|
Сложность: 4 Классы: 7,8,9,10
|
По окружности в одном направлении на равных расстояниях курсируют n поездов. На этой дороге в вершинах правильного треугольника расположены станции A, B и C (обозначенные по направлению движения). Ира входит на станцию A и одновременно Лёша входит на станцию B, чтобы уехать на ближайших поездах. Известно, что если они входят на станции в тот момент, когда машинист Рома проезжает лес, то Ира сядет в поезд раньше Лёши, а в остальных случаях Лёша – раньше Иры или одновременно с ней. Какая часть дороги проходит по лесу?
|
|
Сложность: 4+ Классы: 8,9,10
|
В окружности радиуса 1 проведено несколько хорд.
Докажите, что если каждый диаметр пересекает не более
k
хорд, то сумма длин хорд меньше
k.
Страница:
<< 6 7 8 9 10
11 12 >> [Всего задач: 59]