Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 73]
|
|
Сложность: 4- Классы: 9,10,11
|
На экране компьютера сгенерирована некоторая конечная последовательность нулей и единиц. С ней можно производить следующую операцию: набор цифр "01" заменять на набор цифр "1000". Может ли такой процесс замен продолжаться бесконечно или
когда-нибудь он обязательно прекратится?
|
|
Сложность: 4- Классы: 8,9,10,11
|
По кругу стоят 10 детей разного роста. Время от времени один из них перебегает на другое место (между какими-то двумя детьми). Дети хотят как можно скорее встать по росту в порядке возрастания по часовой стрелке (от самого низкого к самому высокому). Какого наименьшего количества таких перебежек им заведомо хватит, как бы они ни стояли изначально?
|
|
Сложность: 4- Классы: 8,9,10,11
|
Капитан Врунгель в своей каюте разложил перетасованную колоду из 52 карт по кругу, оставив одно место свободным. Матрос Фукс с палубы, не отходя от штурвала и не зная начальной раскладки, называет карту. Если эта карта лежит рядом со свободным местом, Врунгель её туда передвигает, не сообщая Фуксу. Иначе ничего не происходит. Потом Фукс называет еще одну карту, и так сколько угодно раз, пока он не скажет “стоп”. Может ли Фукс добиться того, чтобы после слова "стоп"
а) каждая карта наверняка оказалась не там, где была вначале?
б) рядом со свободным местом наверняка не было туза пик?
|
|
Сложность: 4- Классы: 7,8,9
|
В центре квадратного пирога находится изюминка. От пирога можно отрезать
треугольный кусок по линии, пересекающей в точках, отличных от вершин, две
соседние стороны; от оставшейся части пирога — следующий кусок (таким же
образом) и т.д. Можно ли отрезать изюминку?
На плоскости расположено такое конечное множество точек M, что никакие три точки не лежат на одной прямой. Некоторые точки соединены друг с другом
отрезками так, что из каждой точки выходит не более одного отрезка.
Разрешается заменить пару пересекающихся отрезков AB и CD парой
противоположных сторон AC и BD четырёхугольника ACBD. В полученной системе отрезков разрешается снова произвести подобную замену, и т. д.
Может ли последовательность таких замен быть бесконечной?
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 73]