Страница: 1 [Всего задач: 2]
|
|
Сложность: 3+ Классы: 10,11
|
Пусть x, y, z – любые числа из интервала (0, π/2). Докажите неравенство
На плоскости расположено такое конечное множество точек M, что никакие три точки не лежат на одной прямой. Некоторые точки соединены друг с другом
отрезками так, что из каждой точки выходит не более одного отрезка.
Разрешается заменить пару пересекающихся отрезков AB и CD парой
противоположных сторон AC и BD четырёхугольника ACBD. В полученной системе отрезков разрешается снова произвести подобную замену, и т. д.
Может ли последовательность таких замен быть бесконечной?
Страница: 1 [Всего задач: 2]