Страница:
<< 40 41 42 43
44 45 46 >> [Всего задач: 226]
В равнобедренном треугольнике ABC (AB = BC) биссектрисы AM и BK пересекаются в точке O. Площадь треугольника COK равна 3, угол BCA равен arccos 5/13. Найдите площадь треугольника COM и проекцию отрезка AM на прямую BC.
В равнобедренном треугольнике ABC (AB = BC) биссектрисы CM и BK пересекаются в точке O. Площади треугольников BOM и AOM соответственно равны 25 и 40. Найдите площадь треугольника ABC и проекцию отрезка OM на прямую AB.
В равнобедренном треугольнике ABC (AB = BC) биссектрисы CM и BK пересекаются в точке O. Площадь треугольника AOK равна 10, угол BCA равен arccos 12/13. Найдите площадь треугольника AOM и проекцию отрезка CM на прямую AB.
|
|
Сложность: 4+ Классы: 8,9,10
|
Внутри треугольника ABC взята точка O. Пусть da, db, dc – расстояния от нее до прямых BC, CA, AB.
При каком положении точки O произведение dadbdc будет наибольшим?
|
|
Сложность: 5- Классы: 8,9,10
|
Дан треугольник
A0
B0
C0
. На отрезке
A0
B0
отмечены точки
A1
,
A2
, ,An , а на отрезке
B0
C0
– точки
C1
,
C2
, , Cn , причём
все отрезки
AiCi+1
(
i=0
,1
, n-1
), параллельны
между собой и все отрезки
CiAi+1
(
i=0
,1
, n-1
)
– тоже. Отрезки
C0
A1
,
A1
C2
,
A2
C1
и
C1
A0
ограничивают некоторый параллелограмм, отрезки
C1
A2
,
A2
C3
,
A3
C2
и
C2
A1
–
тоже и т.д. Докажите, что сумма площадей всех
n-1
получившихся
параллелограммов меньше половины площади треугольника
A0
B0
C0
.
Страница:
<< 40 41 42 43
44 45 46 >> [Всего задач: 226]