ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Автор: Фольклор

У прямого кругового конуса длина образующей равна 5, а диаметр равен 8.

Найдите наибольшую площадь треугольного сечения, которая может получиться при пересечении конуса плоскостью.

Вниз   Решение


Коттеджный посёлок имеет размеры 𝑛 × 𝑚 одинаковых квадратных участков. Собственники по очереди начали огораживать свои участки забором. Стоимость части забора между любыми двумя соседними участками составила 10 тысяч рублей и её полностью нёс тот сосед, который огораживал свой участок первым (расходы не делились между соседями, то есть некоторые могли вообще ничего не потратить). В итоге все участки оказались огорожены забором с четырёх сторон. Могло ли оказаться, что в итоге поровну жителей потратило на забор по 0, 10, 30 и 40 тысяч рублей, а остальные — по 20 тысяч?

ВверхВниз   Решение


У одного островного племени есть обычай – во время ритуального танца шаман подбрасывает высоко вверх три тонких прямых прута одинаковой длины, связанных в подобие буквы П. Соседние прутья связаны короткой ниткой и поэтому свободно вращаются друг относительно друга. Прутья падают на песок, образуя случайную фигуру. Если получается самопересечение (первый и третий прутья перекрещиваются), то племя в наступающем году ждут неурожаи и всякие неприятности. Если же самопересечения нет, то год будет удачным – сытным и счастливым. Найдите вероятность того, что на 2017 год прутья напророчат удачу.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 20]      



Задача 102413

Темы:   [ Теорема синусов ]
[ Формулы для площади треугольника ]
Сложность: 3+
Классы: 8,9

В окружности радиуса 4 см с центром в точке O проведены два диаметра AB и CD так, что угол $ \angle$AOC = $ {\frac{\pi}{9}}$. Из точки M, лежащей на окружности и отличной от точек A, B, C и D, проведены к диаметрам AB и CD перпендикуляры MQ и MP соответственно (точка Q лежит на AB, а точка P на CD) так, что $ \angle$MPQ = $ {\frac{2\pi}{9}}$. Найдите площадь треугольника MPQ.

Прислать комментарий     Решение


Задача 102414

Темы:   [ Теорема синусов ]
[ Формулы для площади треугольника ]
Сложность: 3+
Классы: 8,9

В окружности с центром в точке O проведены два диаметра AB и CD так, что угол $ \angle$AOC = $ {\frac{\pi}{12}}$. Из точки M, лежащей на окружности и отличной от точек A, B, C и D, проведены к диаметрам AB и CD перпендикуляры MQ и MP соответственно (точка Q лежит на AB, а точка P на CD) так, что $ \angle$MPQ = $ {\frac{\pi}{4}}$. Найдите отношение площади треугольника MPQ к площади круга.

Прислать комментарий     Решение


Задача 111676

Темы:   [ Вписанные четырехугольники ]
[ Формулы для площади треугольника ]
Сложность: 4
Классы: 8,9

Четырёхугольник ABCD — вписанный. Докажите, что

= .

Прислать комментарий     Решение

Задача 67353

Темы:   [ Теорема синусов ]
[ Формулы для площади треугольника ]
Сложность: 4
Классы: 9,10,11

Автор: Шатунов Л.

Через вершины $A$, $B$, $C$ треугольника $ABC$ провели прямые $a_1, b_1, c_1$ соответственно. Отразим $a_1$, $b_1$, $c_1$ относительно биссектрис соответствующих углов треугольника $ABC$, получив $a_2$, $b_2$, $c_2$. Пусть $A_1=b_1\cap c_1$, $B_1=a_1\cap c_1$, $C_1=a_1\cap b_1$, аналогично определим $A_2$, $B_2$, $C_2$. Докажите, что у треугольников $A_1B_1C_1$ и $A_2B_2C_2$ одинаковое отношение площади к радиусу описанной окружности (т.е. $\frac{S_1}{R_1}=\frac{S_2}{R_2}$, где $S_i=S(\triangle A_iB_iC_i)$, $R_i=R(\triangle A_iB_iC_i)$).
Прислать комментарий     Решение


Задача 111633

Темы:   [ Правильные многоугольники ]
[ Площадь четырехугольника ]
[ Формулы для площади треугольника ]
Сложность: 3
Классы: 8,9

Докажите, что площадь правильного двенадцатиугольника, вписанного в окружность радиуса 1, равна 3.

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 20]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .