ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

Рассмотрим все возможные наборы чисел из множества  {1, 2, 3, ..., n},  не содержащие двух соседних чисел.
Докажите, что сумма квадратов произведений чисел в этих наборах равна  (n + 1)! – 1.

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 58]      



Задача 108690

Темы:   [ Вспомогательные подобные треугольники ]
[ Отношения линейных элементов подобных треугольников ]
[ Площадь треугольника (через высоту и основание) ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9

Дан треугольник ABC, в котором  AB = BC ≠ AC.  На стороне AB выбрана точка E, на продолжении стороны AC за точку A выбрана точка D, причём  ∠BDC = ∠ECA.  Докажите, что площади треугольников DEC и ABC равны.

Прислать комментарий     Решение

Задача 111641

Темы:   [ Неравенства с площадями ]
[ Площадь четырехугольника ]
[ Площадь треугольника (через высоту и основание) ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9,10

Египтяне вычисляли площадь выпуклого четырёхугольника по формуле (a+c)(b+d)/4 , где a , b , c , d  — длины сторон в порядке обхода. Найдите все четырёхугольники, для которых эта формула верна.
Прислать комментарий     Решение


Задача 102477

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вспомогательные подобные треугольники ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 4-
Классы: 8,9

Диаметр AB и хорда CD окружности пересекаются в точке E, причём  CE = DE.  Касательные к окружности в точках B и C пересекаются в точке K. Отрезки AK и CE пересекаются в точке M. Найдите площадь треугольника CKM, если  AB = 10,  AE = 1.

Прислать комментарий     Решение

Задача 102478

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вспомогательные подобные треугольники ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 4-
Классы: 8,9

Диаметр MN и хорда PQ окружности пересекаются в точке R, причём MN перпендикулярен к PQ. Касательные к окружности в точках N и P пересекаются в точке L. Отрезки ML и PR пересекаются в точке S. Найдите диаметр окружности, если площадь треугольника PLS равна 2 и  MR = 1.

Прислать комментарий     Решение

Задача 57540

Темы:   [ Экстремальные точки треугольника ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через высоту и основание) ]
[ Неравенство Коши ]
Сложность: 4+
Классы: 8,9,10

Из точки M, лежащей внутри данного треугольника ABC, опущены перпендикуляры MA1, MB1, MC1 на прямые BC, CA, AB. Для каких точек M внутри данного треугольника ABC величина     принимает наименьшее значение?

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 58]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .