ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 148]      



Задача 115722

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4
Классы: 8,9

На сторонах AB и CD выпуклого четырёхугольника ABCD даны точки E и H соответственно. Докажите, что если треугольники ABH и CDE равновелики и AE:BE=DH:CH , то прямая BC параллельна прямой AD .
Прислать комментарий     Решение


Задача 55133

Темы:   [ Перегруппировка площадей ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4+
Классы: 8,9

Три прямые, параллельные сторонам треугольника ABC и проходящие через одну точку, отсекают от треугольника ABC трапеции. Три диагонали этих трапеций, не имеющие общих концов, делят треугольник на семь частей, из которых четыре — треугольники. Докажите, что сумма площадей трёх из этих треугольников, прилегающих к сторонам треугольника ABC, равна площади четвёртого.

Прислать комментарий     Решение


Задача 108479

Темы:   [ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4+
Классы: 8,9

Углы треугольника ABC удовлетворяют равенству

cos2A + cos2B + cos2C = 1.

Найдите площадь этого треугольника, если радиусы вписанной и описанной окружностей равны $ \sqrt{3}$ и 3$ \sqrt{2}$ соответственно.

Прислать комментарий     Решение


Задача 108143

Темы:   [ Перегруппировка площадей ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Четыре точки, лежащие на одной окружности ]
[ Вписанный угол, опирающийся на диаметр ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Конкуррентность высот. Углы между высотами. ]
[ Ортоцентр и ортотреугольник ]
Сложность: 5
Классы: 8,9,10

На высотах (но не на их продолжениях) остроугольного треугольника ABC взяты точки A1 , B1 , C1 , отличные от точки пересечения высот H , причём сумма площадей треугольников ABC1 , BCA1 , CAB1 равна площади треугольника ABC . Докажите, что окружность, описанная около треугольника A1B1C1 , проходит через точку H .
Прислать комментарий     Решение


Задача 35162

Темы:   [ Трапеции (прочее) ]
[ Площадь треугольника (через высоту и основание) ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 2+
Классы: 9,10

В выпуклом четырёхугольнике ABCD диагонали пересекаются в точке O. Известно, что площади треугольников AOB и COD равны.
Докажите, что ABCD – трапеция или параллелограмм.

Прислать комментарий     Решение

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 148]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .