ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||
Версия для печати
Убрать все задачи В окружность Ω вписан остроугольный треугольник ABC, в котором AB > BC. Пусть P и Q – середины меньшей и большей дуг AC окружности Ω, соответственно, а M – основание перпендикуляра, опущенного из точки Q на отрезок AB. Докажите, что описанная окружность треугольника BMC делит пополам отрезок BP. ![]() ![]() На сторонах остроугольного треугольника ABC взяты точки A1, B1, C1 так, что отрезки AA1, BB1, CC1 пересекаются
в точке H. ![]() ![]() ![]() а) Точки A, B и C лежат на одной прямой, а точки A1, B1 и C1 – на другой. Докажите, что если AB1 || BA1 и AC1 || CA1, то BC1 || CB1. б) Точки A, B и C лежат на одной прямой, а точки A1, B1 и C1 таковы, что
AB1 || BA1, AC1 || CA1 и BC1 || CB1. ![]() ![]() |
Страница: << 1 2 [Всего задач: 6]
Дан треугольник, у которого нет равных углов. Петя и Вася играют в такую игру: за один ход Петя отмечает точку на плоскости, а Вася красит её по своему выбору в красный или синий цвет. Петя выиграет, если какие-то три из отмеченных им и покрашенных Васей точек образуют одноцветный треугольник, подобный исходному. За какое наименьшее число ходов Петя сможет гарантированно выиграть (каков бы ни был исходный треугольник)?
Страница: << 1 2 [Всего задач: 6] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |