ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 127]      



Задача 110916

Темы:   [ Максимальное/минимальное расстояние ]
[ Касательные к сферам ]
[ Правильная пирамида ]
Сложность: 4
Классы: 8,9

В правильной четырёхугольной пирамиде SABCD ( S – вершина) сторона основания равна 8 , высота пирамиды SH равна 8. Точки E и F – середины рёбер AB и AD соответственно. Через точку F перпендикулярно прямой SC проходит плоскость, которая пересекает отрезок SH в точке O . Точки P и Q расположены на прямых SC и EF соответственно, причём прямая PQ касается сферы радиуса с центром в точке O . Найдите наименьшую длину отрезка PQ .
Прислать комментарий     Решение


Задача 110947

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Правильная призма ]
Сложность: 4
Классы: 8,9

Точка D является серединой бокового ребра BB1 правильной треугольной призмы ABCA1B1C1 . На боковой грани AA1C1C взята точка E , на основании ABC – точка F так, что прямые EB1 и FD параллельны. Какой наибольший объём может иметь призма ABCA1B1C1 , если EB1=1 , FD= , EF= ?
Прислать комментарий     Решение


Задача 110948

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Правильная призма ]
Сложность: 4
Классы: 8,9

Точка K является серединой бокового ребра AA1 правильной четырёхугольной призмы ABCDA1B1C1D1 . На боковой грани DD1C1C взята точка L , на основании ABCD – точка M так, что прямые A1L и KM параллельны. Какой наименьший объём может иметь призма ABCDA1B1C1D1 , если A1L= , KM=1 , ML= ?
Прислать комментарий     Решение


Задача 110957

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Сфера, вписанная в пирамиду ]
[ Правильная пирамида ]
Сложность: 4
Классы: 8,9

В правильной четырёхугольной пирамиде с высотой, не меньшей h , расположена полусфера радиуса 1 так, что её касаются все боковые грани пирамиды, а центр полусферы лежит на основании пирамиды. Найдите наименьшее возможное значение полной поверхности такой пирамиды.
Прислать комментарий     Решение


Задача 110958

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Сфера, вписанная в пирамиду ]
[ Правильная пирамида ]
Сложность: 4
Классы: 8,9

В правильной треугольной пирамиде SABCD с высотой, не меньшей h , расположена полусфера радиуса r= так, что её касаются все боковые грани пирамиды, а центр полусферы лежит на основании ABC пирамиды. Найдите наименьшее возможное значение объёма пирамиды.
Прислать комментарий     Решение


Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 127]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .