ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



Задача 77879

Темы:   [ Задачи на максимум и минимум (прочее) ]
[ Скалярное произведение ]
Сложность: 4+
Классы: 10,11

Каково наибольшее возможное число лучей в пространстве, выходящих из одной точки и образующих попарно тупые углы?
Прислать комментарий     Решение


Задача 87173

Темы:   [ Метод координат в пространстве ]
[ Уравнение плоскости ]
[ Скалярное произведение ]
Сложность: 3
Классы: 8,9

Найдите острый угол между плоскостями 2x - y - 3z + 5 = 0 и x + y - 2 = 0 .
Прислать комментарий     Решение


Задача 87210

Темы:   [ Прямоугольные параллелепипеды ]
[ Векторы помогают решить задачу ]
[ Скалярное произведение ]
Сложность: 3
Классы: 8,9

Дан прямоугольный параллелепипед ABCDA1B1C1D1 , в котором AB =4 , AD = 2 , AA1 = 6 . Точка N – середина ребра CD , точка M расположена на ребре CC1 , причём C1M:CM = 1:2 , K – точка пересечения диагоналей грани AA1D1D . Найдите угол между прямыми KM и A1N .
Прислать комментарий     Решение


Задача 87211

Темы:   [ Прямоугольные параллелепипеды ]
[ Векторы помогают решить задачу ]
[ Скалярное произведение ]
Сложность: 3
Классы: 8,9

Дан прямоугольный параллелепипед ABCDA1B1C1D1 , в котором AB =4 , AD = 6 , AA1 = 2 . Точки F и K расположены на рёбрах AD и B1C1 соответственно, причём AF:FD = C1K:KB1 = 1:2 , P – точка пересечения диагоналей грани ABCD . Найдите угол между прямыми PK и B1F .
Прислать комментарий     Решение


Задача 87212

Темы:   [ Прямоугольные параллелепипеды ]
[ Векторы помогают решить задачу ]
[ Скалярное произведение ]
Сложность: 3
Классы: 8,9

Дан прямоугольный параллелепипед ABCDA1B1C1D1 , в котором AB =2 , AD = 4 , BB1 = 12 . Точки M и K расположены на рёбрах CC1 и AD соответственно, причём CM:MC1 = 1:2 , AK = KD . Найдите угол между прямыми AM и KB1 .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .