Страница:
<< 1 2 3 4 5 6
7 >> [Всего задач: 35]
|
|
Сложность: 3 Классы: 10,11
|
Докажите, что если суммы плоских углов при трёх вершинах
треугольной пирамиды равны по
180
o , то все грани
этой пирамиды – равные треугольники (т.е. тетраэдр является
равногранным).
|
|
Сложность: 3 Классы: 10,11
|
Два противоположных ребра треугольной пирамиды равны
a , два
других противоположных ребра равны
b , два оставшихся равны
c .
Найдите косинус угла между рёбрами, равными
a .
|
|
Сложность: 4 Классы: 9,10,11
|
На поверхности равногранного тетраэдра
сидят два муравья. Докажите, что они могут встретиться, преодолев в
сумме расстояние, не превосходящее диаметра окружности, описанной
около грани тетраэдра.
В треугольной пирамиде противоположные рёбра попарно равны.
Докажите, что центры описанной и вписанной сфер совпадают.
Докажите, что все грани тетраэдра равны (т.е. тетраэдр –
равногранный) тогда и только тогда, когда точка пересечения
медиан и центр описанной сферы совпадают.
Страница:
<< 1 2 3 4 5 6
7 >> [Всего задач: 35]