ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 >> [Всего задач: 12]      



Задача 60448

Темы:   [ Числа Каталана ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 4
Классы: 8,9,10,11

Сколько существует способов разрезать выпуклый (n+2)-угольник диагоналями на треугольники?

Прислать комментарий     Решение

Задача 61520

Темы:   [ Числа Каталана ]
[ Производящие функции ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 4
Классы: 10,11

Выведите формулу для чисел Каталана, воспользовавшись результатом задачи 61519 и равенством     где
  – обобщенные биномиальные коэффициенты.
Определение чисел Каталана можно найти в справочнике.

Прислать комментарий     Решение

Задача 60451

 [Формула для чисел Каталана]
Темы:   [ Числа Каталана ]
[ Принцип крайнего (прочее) ]
[ Комбинаторика орбит ]
Сложность: 4+
Классы: 8,9,10,11

  а) Пусть  {a1, a2,..., an}  – последовательность целых чисел, сумма которых равна 1. Докажите, что ровно у одного из ее циклических сдвигов
{a1, a2, ..., an},  {a2, ..., an, a1},  ...,  {an, a1, ..., an–1}  все частичные суммы (от начала до произвольного элемента) положительны.

  б) Выведите отсюда равенства:      где  (4n – 2)!!!! = 2·6·10·...(4n – 2)  – произведение, в котором участвует каждое четвёртое число.
  Определение чисел Каталана Cn смотри в справочнике.

Прислать комментарий     Решение

Задача 61519

Темы:   [ Числа Каталана ]
[ Производящие функции ]
Сложность: 5-
Классы: 9,10,11

Пусть     – производящая функция последовательности чисел Каталана. Докажите, что она удовлетворяет равенству

C(x) = xC²(x) + 1,
и получите явный вид функции C(x).
Определение чисел Каталана можно найти в справочнике.

Прислать комментарий     Решение

Задача 60557

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Числа Каталана ]
[ Треугольник Паскаля и бином Ньютона ]
[ Произведения и факториалы ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 4-
Классы: 9,10,11

При помощи формулы Лежандра (см. задачу 60553) докажите, что число      целое.

Прислать комментарий     Решение

Страница: << 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .