Страница:
<< 36 37 38 39
40 41 42 >> [Всего задач: 232]
|
|
Сложность: 5- Классы: 10,11
|
Докажите, что для чисел {xn} из задачи 61297 можно в явном виде указать разложения в цепные дроби: xn+1 = [1;
].
Оцените разность |xn –
|.
|
|
Сложность: 5- Классы: 9,10,11
|
На доске написаны N ≥ 9 различных неотрицательных чисел, меньших единицы. Оказалось, что для любых восьми различных чисел с доски на ней найдётся такое девятое, отличное от них, что сумма этих девяти чисел целая. При каких N это возможно?
|
|
Сложность: 5- Классы: 9,10,11
|
Докажите, что существует бесконечно много натуральных n, для которых числитель несократимой дроби, равной 1 + ½ + ... + 1/n, не является степенью простого числа с натуральным показателем.
|
|
Сложность: 5 Классы: 10,11
|
Предположим, что цепные дроби
сходятся. Согласно задаче 61330, они будут сходиться к
корням многочлена x² – px + q = 0. С другой стороны к тем же корням будут сходиться и последовательности, построенные по методу Ньютона (см. задачу
61328):
xn+1 = xn –
=
. Докажите, что если x0 совпадает с нулевой подходящей дробью цепной дроби α или β, то числа x1, x2, ... также будут совпадать с подходящими дробями к α или β.
|
|
Сложность: 2 Классы: 5,6,7
|
Как, не имея никаких измерительных средств, отмерить 50 см от шнурка, длина которого ⅔ метра?
Страница:
<< 36 37 38 39
40 41 42 >> [Всего задач: 232]