ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 398]      



Задача 110990

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Правильная пирамида ]
[ Сфера, вписанная в пирамиду ]
Сложность: 4
Классы: 8,9

В правильной треугольной пирамиде расположены два шара так, что первый касается основания пирамиды и её боковых рёбер, а второй шар касается первого шара внешним образом и боковых граней пирамиды. Радиус первого шара равен R . Найдите радиус второго шара, если объём пирамиды при этих условиях является минимально возможным.
Прислать комментарий     Решение


Задача 110991

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Правильная пирамида ]
[ Сфера, вписанная в пирамиду ]
Сложность: 4
Классы: 8,9

В правильной треугольной пирамиде расположены два шара так, что первый касается основания пирамиды и её боковых граней, а второй шар касается первого шара внешним образом и боковых рёбер пирамиды. Радиус первого шара равен r . Найдите радиус второго шара, если объём пирамиды при этих условиях является минимально возможным.
Прислать комментарий     Решение


Задача 110992

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Правильная пирамида ]
[ Сфера, вписанная в пирамиду ]
Сложность: 4
Классы: 8,9

В правильной треугольной пирамиде расположены два шара так, что первый касается основания пирамиды и её боковых рёбер, а второй шар касается первого шара внешним образом и также боковых рёбер пирамиды. Радиус первого шара равен R . Найдите радиус второго шара, если объём пирамиды при этих условиях является минимально возможным.
Прислать комментарий     Решение


Задача 111197

Темы:   [ Правильная призма ]
[ Правильная пирамида ]
[ Теорема о трех перпендикулярах ]
Сложность: 4
Классы: 10,11

В правильной призме ABCA1B1C1 длина стороны основания равна 2a , длина бокового ребра – a . Через вершину A проведена плоскость перпендикулярно прямой AB1 , через вершину B – плоскость перпендикулярно прямой BC1 , через вершину C – плоскость перпендикулярно прямой CA1 . Найдите объём многогранника, ограниченного этими тремя плоскостями и плоскостью A1B1C1 .
Прислать комментарий     Решение


Задача 111198

Темы:   [ Правильная призма ]
[ Правильная пирамида ]
[ Теорема о трех перпендикулярах ]
Сложность: 4
Классы: 10,11

В правильной призме ABCA1B1C1 длина стороны основания равна 2a , длина бокового ребра – a . Проведены четыре плоскости: первая – через точку B перпендикулярно прямой BA1 , вторая – через точку C перпендикулярно прямой CA1 , третья – через точку B1 перпендикулярно прямой B1A , четвёртая – через точку C1 перпендикулярно прямой C1A . Найдите объём многогранника, ограниченного этими четырьмя плоскостями и плоскостью BB1C1C .
Прислать комментарий     Решение


Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 398]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .