ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 108110
УсловиеОкружность S с центром O и окружность S' пересекаются в точках A и B. На дуге окружности S, лежащей внутри S', взята точка C. Точки пересечения прямых AC и BC с S', отличные от A и B, обозначим через E и D соответственно. Докажите, что прямые DE и OC перпендикулярны. Решение 1 Пусть касательная к окружности S, проведённая через точку C, пересекает окружность S' в точке M, лежащей на дуге AD, не содержащей точки E. Тогда Решение 2 Пусть α = ∠BDE = ∠BAE = ∠BAC. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|