ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 109516
Темы:    [ Свойства симметрии и центра симметрии ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Четыре точки, лежащие на одной окружности ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Автор: Купцов Л.

Из центра симметрии двух равных пересекающихся окружностей проведены два луча, пересекающие окружности в четырех точках, не лежащих на одной прямой. Докажите, что эти точки лежат на одной окружности.

Решение

Пусть A1 и A2 – точки, лежащие на первой окружности, а B1 и B2 – точки, лежащие на второй окружности. Обратимся к ситуации, изображенной на 1021 (случай, изображенный на 1022 рассматривается аналогично). Пусть точки A3 , B3 и B4 симметричны точкам B2 , A1 и A2 соответственно относительно точки O . По теореме о пересекающихся хордах B3O· OB1=B2O· OB4 , откуда OA1· OB1=OB2· OA2 , так как B3O=OA1 и OB4=OA2 . Это и означает, что точки A1 , B1 , B2 и A2 лежат на одной окружности.




В случае, показанном на 1021, B2B3=A1A3 в силу симметрии этих дуг относительно точки O . Поэтому A3A2A1= B3B1B2 , т.е. отрезок A1B2 виден из точек B1 и A2 под одинаковым углом, следовательно, точки A1 , A2 , B1 и B2 лежат на одной окружности. В случае, изображенном на 1022, B2B3=A1A3 , A3A2A1= B3B1B2 , но A1A2B2=180o- A3A2A1 , поэтому B3B1B2+ A1A2B2=180o .

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 1993
Этап
Вариант 5
класс
Класс 10
задача
Номер 93.5.10.2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .