ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 109558
УсловиеДаны три приведённых квадратных трехчлена: P1(x), P2(x) и P3(x). Докажите, что уравнение |P1(x)| + |P2(x)| = |P3(x)| имеет не более восьми корней. РешениеКаждый корень данного уравнения является корнем одного из квадратных трёхчленов ± P1 ± P2 ± P3 с некоторым набором знаков. Таких наборов 8, и все они дают действительно квадратные трёхчлены, так как коэффициент при x² нечётен. Однако двум противоположным наборам знаков соответствуют квадратные уравнения, имеющие одни и те же корни. Значит, все решения уравнения |P1(x)| + |P2(x)| = |P3(x)| содержатся среди корней четырёх квадратных уравнений. Следовательно, их не более восьми.Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|