ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 110047
Темы:    [ Рациональные и иррациональные числа ]
[ Разложение на множители ]
Сложность: 4-
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Ненулевые числа a и b удовлетворяют равенству  a²b²(a²b² + 4) = 2(a6 + b6).  Докажите, что хотя бы одно из них иррационально.


Решение

Переписав равенство в виде  (a4 – 2b²)(b4 – 2a²) = 0,  получаем, что либо      либо      Как известно, оба равенства невозможны при рациональных a и b.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2000
Этап
Вариант 4
Класс
Класс 8
задача
Номер 00.4.8.1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .