ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 110198
Условиеа) В 99 ящиках лежат яблоки и апельсины. б) В 100 ящиках лежат яблоки и апельсины. Решение 1 а) Упорядочим ящики по убыванию количества яблок в них: x1 ≥ x2 ≥ ... ≥ x99. Достаточно разбить ящики со 2-го по 99-й на две группы по 49 ящиков так, чтобы количество яблок в двух группах различалось не больше, чем на x1. Тогда, выбрав ту из двух групп, в ящиках которой в сумме не меньше апельсинов, чем в другой, и добавив к ней первый ящик, мы получим требуемый выбор 50 ящиков. б) В обозначениях решения пункта а) достаточно разбить ящики со 2-го по 100-й на три группы по 33 ящика так, чтобы количество яблок в двух группах различалось не больше, чем на x1. Тогда, выбрав ту из трех групп, в ящиках которой в сумме не меньше апельсинов, чем в любой другой, и добавив к ней первый ящик, мы получим требуемый выбор 34 ящиков. Решение 2 а) Допустим, что есть ящик A, в котором xA яблок и yA апельсинов, и ящик B, в котором xB < xA яблок и yB < yA апельсинов. Заменим их на ящик A', в котором xA яблок и yB апельсинов, и ящик B', в котором xB яблок и yA апельсинов. Заметим, что если мы можем выбрать 50 ящиков из нового набора, то и из старого тоже можем. В самом деле, если из нового набора мы должны взять только один из ящиков A' и B', то в старом наборе возьмём вместо него ящик A, а если в новом наборе мы должны были взять оба ящика A' и B' – возьмём в старом наборе оба ящика A и B. б) Как и в пункте а) показываем, что достаточно решить задачу для набора яшиков со следующим свойством: если в ящике X больше яблок, чем в ящике Y, то в нем меньше апельсинов, чем в ящике Y. Замечания1. Пункт а) предлагался на Всероссийской олимпиаде для 8 классов, пункт б) – для 9 кл. 2. Ср. с задачей 110178. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|