ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 116560
Темы:    [ Принцип Дирихле (прочее) ]
[ Принцип крайнего (прочее) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 9,10
В корзину
Прислать комментарий

Условие

На доску выписаны 2011 чисел. Оказалось, что сумма каждых трёх выписанных чисел также является выписанным числом.
Какое наименьшее количество нулей может быть среди этих чисел?


Решение

  Пример из 2009 нулей и чисел 1, –1 удовлетворяет условию.
  Предположим, что количество нулей не больше 2008. Тогда на доске найдутся либо три неотрицательных числа, среди которых хотя бы два строго положительных, либо три неположительных числа, среди которых хотя бы два строго отрицательны. Пусть выполнено первое: числа a и b положительны, а c неотрицательно. Можно считать, что a – наибольшее из всех выписанных чисел. Но тогда число  a + b + c > a  не может быть выписанным. Противоречие.


Ответ

2009 нулей.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2010-2011
Этап
Вариант 4
Класс
Класс 10
Задача
Номер 10.6

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .