ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 116946
УсловиеНа окружности длины 2013 отмечены 2013 точек, делящих её на равные дуги. В каждой отмеченной точке стоит фишка. Назовём расстоянием между двумя точками длину меньшей дуги между ними. При каком наибольшем n можно переставить фишки так, чтобы снова в каждой отмеченной точке было по фишке, а расстояние между любыми двумя фишками, изначально удалёнными не более чем на n, увеличилось? Решение Оценка. Занумеруем точки и стоящие на них фишки по часовой стрелке последовательными неотрицательными целыми числами от 0 до 2012. Рассмотрим произвольную перестановку и фишки с номерами 0, 671 и 1342, изначально расположенные в вершинах правильного треугольника. Попарные расстояния между ними равны 671. После перестановки сумма попарных расстояний между этими фишками не будет превосходить длины окружности, а значит, расстояние между какими-то двумя не будет превосходить 2013 : 3 = 671; поэтому расстояние между этими двумя фишками не увеличится. Итак, при n ≥ 671 требуемая перестановка невозможна. Ответn = 670. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|