ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56464
Темы:    [ Отрезки, заключенные между параллельными прямыми ]
[ Диаметр, основные свойства ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Одна из диагоналей вписанного в окружность четырёхугольника является диаметром.
Докажите, что проекции противоположных сторон на другую диагональ равны.


Решение

Пусть AC – диаметр окружности, описанной около четырёхугольника ABCD. Опустим перпендикуляры AA1 и CC1 и OP на BD (O – центр описанной окружности; см. рис.). Ясно, что P – середина отрезка BD. Прямые AA1, OP, CC1 параллельны и  AO = OC,  поэтому  A1P = PC1.  Так как P – середина BD, то  BA1 = DC1.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 1
Название Подобные треугольники
Тема Подобные треугольники
параграф
Номер 1
Название Отрезки, заключенные между параллельными прямыми
Тема Отрезки, заключенные между параллельными прямыми
задача
Номер 01.009

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .