Страница: 1
2 3 4 >> [Всего задач: 16]
Докажите, что середины сторон произвольного четырёхугольника – вершины параллелограмма.
Для каких четырёхугольников этот параллелограмм является
прямоугольником, для каких – ромбом, для каких – квадратом?
На стороне AD параллелограмма ABCD взята точка P так, что
AP : AD = 1 : n, Q – точка пересечения прямых AC и BP.
Докажите, что AQ : AC = 1 : (n + 1).
На диагонали BD параллелограмма ABCD взята точка K. Прямая AK пересекает прямые BC и CD в точках L и M. Докажите, что AK² = LK·KM.
Одна из диагоналей вписанного в окружность четырёхугольника является диаметром.
Докажите, что проекции противоположных сторон на другую диагональ равны.
На основании AD трапеции ABCD взята точка E так, что AE = BC. Отрезки CA и CE пересекают диагональ BD в точках O и P соответственно.
Докажите, что если BO = PD, то AD² = BC² + AD·BC.
Страница: 1
2 3 4 >> [Всего задач: 16]