Страница: 1
2 3 4 5 6 7 >> [Всего задач: 105]
Найдите внутри треугольника ABC все такие точки P, чтобы общие
хорды каждой пары окружностей, построенных на отрезках PA, PB и PC как на диаметрах, были равны.
Докажите, что диаметр окружности, перпендикулярный хорде, делит эту хорду пополам.
Докажите, что диаметр, проходящий через середину хорды, не являющейся диаметром, перпендикулярен этой хорде.
Докажите, что хорды, удалённые от центра окружности на равные расстояния, равны.
Через точку A, лежащую на окружности, проведены диаметр AB и
хорда AC, причём AC = 8 и
BAC = 30o. Найдите хорду CM,
перпендикулярную AB.
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 105]