ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56478
Темы:    [ Признаки и свойства параллелограмма ]
[ Вспомогательные равные треугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 9
В корзину
Прислать комментарий

Условие

Прямая l пересекает стороны AB и AD и диагональ AC параллелограмма ABCD в точках E, F и G соответственно. Докажите, что  AB/AE + AD/AF = AC/AG.


Решение

Возьмём на диагонали AC такие точки D' и B', что  BB' || l  и  DD' || l.  Так как стороны треугольников ABB' и CDD' попарно параллельны и  AB = CD,  эти треугольники равны и  AB' = CD'.  Поэтому  AB/AE + AD/AF = AB'/AG + AD'/AG = CD'+AD'/AG = AC/AG.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 1
Название Подобные треугольники
Тема Подобные треугольники
параграф
Номер 2
Название Отношение сторон подобных треугольников
Тема Отношения линейных элементов подобных треугольников
задача
Номер 01.023

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .