ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56563
Темы:    [ Угол между касательной и хордой ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Окружности S1 и S2 пересекаются в точках A и P. Через точку A проведена касательная AB к окружности S1, а через точку P — прямая CD, параллельная AB (точки B и C лежат на S2, точка D — на S1). Докажите, что ABCD — параллелограмм.

Решение

Так как  $ \angle$(AB, AD) = $ \angle$(AP, PD) = $ \angle$(AB, BC), то  BC || AD.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 2
Название Вписанный угол
Тема Вписанный угол
параграф
Номер 3
Название Угол между касательной и хордой
Тема Угол между касательной и хордой
задача
Номер 02.022

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .