ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56570
Темы:    [ Угол между касательной и хордой ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9
В корзину
Прислать комментарий

Условие

Окружность S1 касается сторон угла ABC в точках A и C. Окружность S2 касается прямой AC в точке C и проходит через точку B, окружность S1 она пересекает в точке M. Докажите, что прямая AM делит отрезок BC пополам.

Решение

Пусть прямая AM пересекает окружность S2 в точке D. Тогда  $ \angle$MDC = $ \angle$MCA = $ \angle$MAB, поэтому  CD || AB. Далее,  $ \angle$CAM = $ \angle$MCB = $ \angle$MDB, поэтому  AC || BD. Таким образом, ABCD — параллелограмм, и его диагональ AD делит диагональ BC пополам.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 2
Название Вписанный угол
Тема Вписанный угол
параграф
Номер 3
Название Угол между касательной и хордой
Тема Угол между касательной и хордой
задача
Номер 02.029

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .