ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56836
Тема:    [ Вписанные и описанные окружности ]
Сложность: 5
Классы: 8
В корзину
Прислать комментарий

Условие

В неравнобедренном треугольнике ABC через середину M стороны BC и центр O вписанной окружности проведена прямая MO, пересекающая высоту AH в точке E. Докажите, что AE = r.

Решение

Пусть P — точка касания вписанной окружности со стороной BCPQ — диаметр вписанной окружности, R — точка пересечения прямых AQ и BC. Так как CR = BP (см. задачу 19.11, а)) и M -- середина стороны BC, то RM = PM. Кроме того, O -- середина диаметра PQ, поэтому MO| QR, а так как AH| PQ, то AE = OQ.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 5
Название Треугольники
параграф
Номер 1
Название Вписанная и описанная окружности
Тема Вписанные и описанные окружности
задача
Номер 05.007

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .