ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57548
Тема:    [ Угол (экстремальные свойства) ]
Сложность: 5
Классы: 9
В корзину
Прислать комментарий

Условие

Дан угол XAY. Концы B и C отрезков BO и CO длиной 1 перемещаются по лучам AX и AY. Постройте четырехугольник ABOC наибольшей площади.

Решение

Четырехугольник ABOC наибольшей площади выпуклый. Среди всех треугольников ABC с фиксированными углом A и стороной BC наибольшую площадь имеет равнобедренный треугольник с основанием BC. Значит, среди всех рассматриваемых четырехугольников ABOC с фиксированной диагональю BC наибольшую площадь имеет четырехугольник, для которого AB = AC, т. е. точка O лежит на биссектрисе угла A. Рассмотрим, далее, треугольник ABO, в котором фиксированы угол BAO, равный $ \angle$A/2, и сторона BO. Площадь этого треугольника максимальна, когда AB = AO.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 11
Название Задачи на максимум и минимум
Тема Экстремальные свойства. Задачи на максимум и минимум.
параграф
Номер 3
Название Угол
Тема Угол (экстремальные свойства)
задача
Номер 11.028

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .