ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 65745
Темы:    [ Десятичная система счисления ]
[ Доказательство от противного ]
[ Признаки делимости на 3 и 9 ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Из цифр 1, 2, 3, 4, 5, 6, 7, 8, 9 составлены девять (не обязательно различных) девятизначных чисел; каждая из цифр использована в каждом числе ровно один раз. На какое наибольшее количество нулей может оканчиваться сумма этих девяти чисел?


Решение

  Оценка. Пусть сумма оканчивается на девять нулей. Каждое из составленных чисел делится на 9, поскольку сумма его цифр делится на 9. Поэтому их сумма также делится на 9. Наименьшее натуральное число, делящееся на 9 и оканчивающееся на девять нулей, равно 9·109, так что сумма наших чисел не меньше 9·109. Значит, одно из них не меньше 109. Противоречие.
  Пример с восемью нулями:  8·987654321 + 198765432 = 81·108.


Ответ

На 8 нулей.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Вариант 2015/2016
этап
Вариант 5
класс
Класс 9
задача
Номер 9.5
олимпиада
Название Всероссийская олимпиада по математике
год
Вариант 2015/2016
этап
Вариант 5
класс
Класс 10
задача
Номер 10.5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .