ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 78821
УсловиеОзеро имеет форму невыпуклогоРешениеИтак, имеется несамопересекающийся невыпуклый n-угольник P. Рассмотрим множество T его внутренних точек, из которых видны все вершины P. Докажем, что T — выпуклый многоугольник, число сторон которого не больше n.Каждой стороне AB многоугольника P поставим в соответствие полуплоскость, граница которой есть прямая AB (из двух таких полуплоскостей мы выбираем ту, которая содержит достаточно близкие к AB внутренние точки многоугольника P). Число таких полуплоскостей равно числу сторон P, что равно n. Тем самым, в пересечении всех таких полуплоскостей получается выпуклый многоугольник T с количеством сторон не большим n. Докажем, что многоугольник T и является искомым. Во-первых, заметим, что если точка не содержится в какой-нибудь из рассмотренных полуплоскостей, то из неё не видно одной из вершин соответствующей стороны. Во-вторых, докажем, что из любой точки многоугольника T видны все вершины многоугольника P. Предположим противное. Пусть точка B принадлежит T, но из B не видно вершину A. Это значит, что отрезок AB пересекает стороны многоугольника P. Если часть отрезка AB, прилегающая к вершине A, лежит вне многоугольника, то точка B не принадлежит полуплоскости, соответствующей стороне многоуголника с вершиной A. Иначе рассмотрим сторону многоугольника ближайшую к точке A и пересекающую AB, тогда точка B не принадлежит полуплоскости, соответствующей этой стороне. Получили противоречие. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|