Страница: 1 [Всего задач: 2]
Задача
78818
(#1)
|
|
Сложность: 4- Классы: 8,9,10
|
В городе "Многообразие" живут
n жителей, любые два из которых либо
дружат, либо враждуют между собой. Каждый день не более чем один житель может
начать новую жизнь: перессориться со всеми своими друзьями и подружиться со
всеми своими врагами. Доказать, что все жители могут подружиться.
Примечание. Если
A — друг
B, а
B — друг
C, то
A — также друг
C. Предполагается также, что среди любых троих жителей хотя бы двое дружат между собой.
Задача
78821
(#4)
|
|
Сложность: 5+ Классы: 8,9,10,11
|
Озеро имеет форму невыпуклого
n-угольника. Докажите, что множество точек озера, из которых видны все его берега, либо пусто, либо заполняет внутренность выпуклого
m-угольника, где
m≤n.
Страница: 1 [Всего задач: 2]