ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 79361
УсловиеНа плоскости отмечена точка O. Можно ли так расположить на плоскости: а) 5 кругов; б) 4 круга, не покрывающих точку O, чтобы каждый луч с началом в точке O пересекал не менее двух кругов? Решениеа) Пусть O – центр правильного пятиугольника ABCDE. Тогда круги, вписанные в углы AOC, BOD, COE, DOA и EOB, обладают требуемым свойством. б) Рассмотрим для каждого из четырёх кругов угол, образованный касательными к нему, проходящими через точку O. Так как каждый из этих четырёх углов меньше 180°, в сумме они дают меньше 2·360°. Поэтому найдётся точка плоскости, покрытая не более чем одним из этих углов. Луч, проведённый через эту точку, пересекает не более одного круга. Ответа) Можно; б) нельзя. ЗамечанияСр. с задачей 79365. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|