ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 97989
УсловиеДоказать, что в вершинах многогранника можно расставить натуральные числа
так, что в каждых двух вершинах, соединённых ребром, стоят числа не взаимно простые, а в каждых двух вершинах, не соединённых ребром, взаимно простые.
РешениеРасставим на рёбрах многогранника различные простые числа. Теперь в вершины запишем произведения чисел, стоящих на рёбрах, которые сходятся в этой вершине. Расставленные числа удовлетворяют требованиям задачи. Замечания3 балла Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|