Страница: 1 [Всего задач: 4]
Задача
97987
(#1)
|
|
Сложность: 3+ Классы: 8,9,10
|
Существует ли степень двойки, из которой перестановкой цифр можно получить
другую степень двойки?
Задача
55597
(#2)
|
|
Сложность: 3 Классы: 8,9
|
Высоты треугольника ABC пересекаются в точке H. Докажите, что
радиусы окружностей, описанных около треугольников ABC, AHB, BHC и AHC, равны между собой.
Задача
97989
(#3)
|
|
Сложность: 2+ Классы: 8,9,10
|
Доказать, что в вершинах многогранника можно расставить натуральные числа
так, что в каждых двух вершинах, соединённых ребром, стоят числа не взаимно простые, а в каждых двух вершинах, не соединённых ребром, взаимно простые.
Примечание: простых чисел бесконечно много.
Задача
97990
(#4)
|
|
Сложность: 3+ Классы: 8,9,10
|
Тетрадный лист раскрасили в 23 цвета по клеткам. Пара цветов называется
хорошей, если существует две соседние клетки, закрашенные этими цветами. Каково минимальное число хороших пар?
Страница: 1 [Всего задач: 4]