ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 98491
Темы:    [ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Автор: Жгун В.С.

Треугольник ABC вписан в окружность. Через точку A проведены хорды, пересекающие сторону BC в точках K и L и дугу BC в точках M и N.
Докажите, что если вокруг четырёхугольника KLNM можно описать окружность, то треугольник ABC равнобедренный.


Решение 1

B = ∠AKC – ∠BAM = ∠ANM – ∠BCM = ∠ACM – ∠BCM = ∠C.


Решение 2

ACN = 180° – ∠AMN = ∠KLN = ∠ALC.  Значит, треугольники ACN и ALC подобны по двум углам, откуда  AC² = AN·AL.
Аналогично AB² =AM·AK = AN·AL = AC².

Замечания

3 балла

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 2000/2001
Номер 22
вариант
Вариант осенний тур, тренировочный вариант, 10-11 класс
Задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .