Страница: 1
2 3 4 5 6 7 >> [Всего задач: 43]
В клетках таблицы 4×4 записаны числа так, что сумма соседей у каждого числа равна 1 (соседними считаются клетки, имеющие общую сторону).
Найдите сумму всех чисел таблицы.
|
|
Сложность: 3 Классы: 9,10,11
|
Треугольник ABC вписан в окружность. Через точку A проведены хорды, пересекающие сторону BC в точках K и L и дугу BC в точках M и N.
Докажите, что если вокруг четырёхугольника KLNM можно описать окружность, то треугольник ABC равнобедренный.
|
|
Сложность: 3 Классы: 9,10,11
|
Натуральные числа a, b, c, d таковы, что ad – bc > 1. Докажите, что хотя бы одно из чисел a, b, c, d не делится на ad – bc.
Натуральное число n разрешается заменить на число ab, если a + b = n и числа a и b натуральные.
Можно ли с помощью таких замен получить из числа 22 число 2001?
В параллелограмме ABCD точка E – середина AD. Точка F – основание перпендикуляра, опущенного из B на прямую CE.
Докажите, что треугольник ABF – равнобедренный.
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 43]