ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 4]      



Задача 98491  (#1)

Темы:   [ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3
Классы: 9,10,11

Автор: Жгун В.С.

Треугольник ABC вписан в окружность. Через точку A проведены хорды, пересекающие сторону BC в точках K и L и дугу BC в точках M и N.
Докажите, что если вокруг четырёхугольника KLNM можно описать окружность, то треугольник ABC равнобедренный.

Прислать комментарий     Решение

Задача 98492  (#2)

Тема:   [ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 9,10,11

Натуральные числа a, b, c, d таковы, что ad – bc > 1.  Докажите, что хотя бы одно из чисел a, b, c, d не делится на  ad – bc.

Прислать комментарий     Решение

Задача 98493  (#3)

Темы:   [ Призма (прочее) ]
[ Конус (прочее) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 3+
Классы: 10,11

Среди углов каждой боковой грани пятиугольной призмы есть угол φ. Найдите все возможные значения φ.

Прислать комментарий     Решение

Задача 98494  (#4)

Темы:   [ Взвешивания ]
[ Двоичная система счисления ]
Сложность: 4-
Классы: 8,9,10,11

а) Даны 32 одинаковые по виду монеты. Известно, что среди них есть ровно две фальшивые, которые отличаются от остальных по весу (настоящие монеты равны по весу, и фальшивые монеты также равны по весу). Как разделить все монеты на две равные по весу кучки, сделав не более четырёх взвешиваний на чашечных весах без гирь?

б) Та же задача для 22 монет.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .