ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 98580
УсловиеВ выпуклом 2002-угольнике провели несколько диагоналей, не пересекающихся внутри 2002-угольника. В результате 2002-угольник разделился на 2000 треугольников. Могло ли случиться, что ровно у половины этих треугольников все стороны являются диагоналями этого 2002-угольника? РешениеВсе стороны 2002-угольника являются сторонами треугольников. В один треугольник может попасть не более двух сторон многоугольника. Поэтому треугольников, в которые попали стороны 2002-угольника, не меньше чем 2002 : 2 = 1001, что больше половины. ОтветНе могло. Замечания4 балла Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|